Some Practice Problems using Mathematical Induction

1. Prove that, for
$$n \ge 1$$
, $\sum_{i=1}^{n} i^3 = \left(\sum_{i=1}^{n} i\right)^2$. (Hint: you already have a formula for $\sum_{i=1}^{n} i$.)

2. Prove that, for
$$n \ge 1$$
, $\sum_{i=1}^{n} i2^{i} = 2 + (n-1)2^{n+1}$.

- 3. Prove that if n > 3, then $2^n < n!$.
- 4. Prove that if n > 4, then $n^2 < 2^n$.
- 5. Prove that if n > 9, then $n^3 < 2^n$.

6. Prove that if
$$n \ge 1$$
, then $\sum_{j=1}^{n} jH_j = \frac{n(n+1)}{2}H_{n+1} - \frac{n(n+1)}{4}$.

7. Define $\{a_n\}$ by $a_0 = 0$, $a_1 = 1$, and $a_n = \frac{a_{n-1} + (n-1)a_{n-2}}{n}$ when $n \ge 2$. Prove that, for all $n \ge 0$, $0 \le a_n \le 1$.